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Abstract 

Curvature is widely used in seismic interpretation. One of 
the most common approaches for computing volumetric 
curvatures is based on fitting of a simple quadratic 
surface for each point of the volume. The curvature 
attributes are subsequently obtained from the coefficients 
of this surface. This paper discusses this approach and 
proposes an adaptive rotation of axes to improve its 
performance for steep dips. A modification of the 
traditional algorithm is proposed, and tests with synthetic 
and real data are presented. 

Introduction 

Curvature attributes are widely used in seismic 
interpretation to image folds and flexures, sub-seismic 
antithetic faults that appear as drag or folds adjacent to 
faults, diagenetically altered fractures, karst, and 
differential compaction over channels (Marfurt et al., 
2010).  

Initially, curvature was computed only from interpreted 
horizons. In the method proposed by Roberts (2001), a 
least squares quadratic surface is fitted to each horizon 
point, using the surrounding eight grid values. The 
curvature attributes are subsequently obtained from the 
quadratic surface.  

Currently, the curvature can be evaluated directly from 3D 
seismic data. Two basic approaches exist to compute 
volumetric curvature, and both use a previously computed 
dip volume. In the first approach, a quadratic surface is 
built for each point of the volume. The surface is defined 
as an explicit function z = f(x, y) from which the curvature 
can be evaluated. The coefficients can be computed by 
the least-squares method (Klein et al., 2008) or directly 
from the dip volume (Al Dossary et al., 2006, Rich, 2008). 
The second approach is based on the implicit function 
representation of the structures present on the data 
volume (Donias et al., 1998, Martins et al., 2012). 

This paper aims to analyze and improve the behavior of 
the curvature attributes computed via quadratic 
approximation in the presence of high dip values. A 
modification of the traditional algorithm is proposed, and 
tests with synthetic and real data are presented. 

Computing Curvature by Quadratic Approximation 

One concept used to describe the geometry of a reflector 
present in 3D seismic data addresses its orientation. The 
reflector can be viewed as a piecewise continuous 
surface, and each point of the surface has a tangent 
plane defined by its normal vector n. The tangent plane 

describes the neighborhood near that point of the 
structure in terms of its orientation.  Given the normal 
vector  

),,,( yxz
T nnnn  (1) 

where z is the vertical coordinate (time or depth), x and y 
are the spatial coordinates and with nz chosen as semi-
positive (nz ≥ 0), we can identify the dip and azimuth. If we 
let p and q be the components of the dip in the directions 
X and Y, respectively, it is possible to show that 
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Another useful concept for describing the geometry of a 
structure is the curvature. Curvature is a geometric 
measure of how the surface bends. Using the normal 
vectors, it describes how the normal vectors change in 
the neighborhood of each point.  

While the orientation of a given point in a seismic horizon 
can be fully described by its tangent plane, local 
variations of the normal to the horizon can be 
accommodated in an imaginary quadratic surface. The 
approach based on quadratic surface approximation for 
curvature computation of a seismic horizon was 
presented by Roberts (2001). Following his notation, we 
consider a surface described as single-value function 

feydxcxybyaxyxz  22),(  (4) 

The point at which the curvature will be computed 
corresponds to x = 0 and y = 0.  

Al Dossary et al. (2006) proposed an automatic 
computation of the coefficients of the z function from the 
previously computed dip volume. The two dip 
components p and q are related to the z function at point 

(0, 0) by:  
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Therefore, differentiating (4) and using (5) and (6), the 
coefficients can be obtained as shown: 
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Once the set of coefficients is computed, we can obtain 
the various types of curvature, e.g., the mean and 
Gaussian curvature can be calculated as in Roberts 
(2001): 
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Testing the Quadratic Approximation z=f(x, y) 

In this paper, we tested the quality of the quadratic 
approximation with a spherical shell. A sphere with radius 
R has a constant curvature equal to 1/R. We built a 
synthetic volume containing a single spherical shell with a 
radius equal to 50 samples. To avoid sampling problems, 
the shell was built using a thickness of 7 samples; the 
central sample has an amplitude value of 1.0 and the 
other 6 values are such that the shell presents a radial 
cubic decay from the central sample.  

The dip was computed using the gradient approach. We 
chose the spherical data as the input for the Gaussian 
derivative operator (with standard deviation equal to 1.0) 
and applied the structure tensor (Bakker, 2002) as a 
smooth vector filter with Gaussian weights (standard 
deviation equal to 2.0). The dip obtained was qualitatively 
satisfactory, as shown in Figure 1 (dark green color 
corresponds to -45

o
 and blue to less than -67

o
 values). 

This figure presents the dip crossline component mapped 
on a spherical surface with a radius of 50 extracted from 
the synthetic volume.  

We would use the dip values obtained directly from the 
sphere construction method; however, the two set of 
values are very similar and this change didn’t produce 
important difference for curvature values. 

Computing the mean curvature for these data, we 
observe that the values are close to the expected value of 
0.02, at least until near 30

o
. However, these values tend 

to decrease as the angle increases. This behavior can be 

observed in Figure 2 in which we present the graph for 
the mean curvature plotted against the dip angle for a 
constant azimuth (along the y = 0 plane).  

The same behavior can be observed in Figure 3 in which 
the mean curvature was mapped on the same surface of 
Figure 1. In Figure 3, blue corresponds to 0.020, green to 
0.015, yellow to 0.014 and red to values less than 0.012. 

 

 

Figure 1: Dip crossline component mapped on the 
spherical shell. 

 

 

Figure 2: Graph of the mean curvature plotted against 
angle for the spherical shell. 

 

 

Figure 3: Mean curvature computed with z=f(x, y) 
approximation mapped on the spherical shell. 
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The problem is numeric. For small dip, both the first 
derivatives of z (d and e), present in the denominator of 
expressions (12) and (13), and the second derivatives of 
z (a, b and c), present in the numerator, assume small 
values. As the dip angle increases, both numerator and 
denominator also increase. In particular, for 90

o
, they go 

to infinity. Mathematically, for an ideal sphere, they 
change with an equal rate in such a way that it keeps 
constant the curvature value. However, for discrete 
sphere data the computation results unstable and, in our 
test, the curvature decreases with dip. 

 

Combining three Quadratic Approximations: z=f(x, y), 
x=f(y, z) and y=f(z, x) 

To remedy the problem identified above, at least for 
angles greater than 45

o
, we propose to use the quadratic 

approximation z=f(x, y) from equation (4) only when the 

absolute value of the z component of the normal vector 
|nz| is the greatest in absolute value for the three 
components of n. In other words, we use (4) only when 
|nz| ≥ |nx| and |nz| ≥ |ny|. Otherwise, we change the roles of 

the three components by rotating the axes and rewriting 
equation (4).  

If |nx| > |ny| and |nx| > |nz|, we rotate -90° around the y 
axis. In this case, the old z axis becomes the new x axis, 
and the old x axis becomes the –z axis. We apply these 
changes to equations (5) to (11). In this case, we build the 
quadratic approximation for x = f(y, z).  

If |ny| > |nz) and |ny|  > |nx|, we rotate -90° around the x 
axis. In this case, the old z axis becomes the -y axis, and 
the old y axis becomes the new z axis. In this case, we 
build the quadratic approximation for y = f(z, x). 

In Figure 4, we show the three regions determined by the 
normal components, as described previously, for the 
example of the spherical shell. The sphere is viewed from 
the top, and the blue color displays the points where we 
build the traditional approximation z = f(x, y), whereas the 
white color displays the points where we build x = f(y, z) 
and red denotes y = f(z, x). 

Observe that, while Al Dossary et al. (2006) approach has 
p and q as input for curvature computation, here, we need 
two components of the normal vector as input (the third 
one comes from the normalization). Again, this is 
important to avoid numerical problems. 

Using this approach, we can compute the curvature and 
reduce the previously described numerical problems 
when the inclination of the surface is greater than 45°. 
Figures 5 and 6 show the improvement of the curvature 
computation in the proposed method compared with the 
classical proposal shown in Figures 2 and 3.  

 

 

Figure 4: The three regions for the spherical shell. 

 

 

Figure 5: Graph of the mean curvature plotted against 
angle for the spherical shell with the two strategies. Red 
color corresponds to the traditional one and green color to 
the proposed one. 

 

 

Figure 6: Mean curvature computed with z=f(x, y) / x=f(y, 
z) / y=f(z, x) approximations mapped on a surface 

extracted from the sphere. 
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Algorithm 

The proposed algorithm can be implemented as follows:  

 

1. Compute the normal vector (nz, nx, ny) for the input 

seismic volume. 

2. For each point of the volume: 

2.1. If |nz| ≥ |nx| and |nz| ≥ |ny|, then: 

2.1.1.  
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2.2. Else If |nx| > |ny| and |nx| > |nz|, then: 
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2.2.2. If nx < 0, then: 

2.2.2.1.  ;; qqpp   

ccbbaa  ;;  

2.3. Else If |ny| > |nz| and |ny| > |nx|, then: 

2.3.1. 
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2.3.2. If ny > 0, then: 

2.3.2.1. ;; qqpp   

ccbbaa  ;;  

2.4. ;; qepd   

2.5. Use a, b, c, d and e values to compute the 
desired curvature values for the current point as 
described in Roberts (2001) and Rich (2008). 

 

The items 2.2.2.1 and 2.3.2.1 are necessary to adjust the 
approximations to the sign convention for the curvature 
attributes: positive for anticlines and negative for 
synclines.  

 

Examples 

We applied our algorithm to real 3D seismic data. The 
following images present snapshots for two vertical 

sections of the seismic amplitude. In Figure 7, an arrow 
marks the location of a fault, and this fault occurs in a 
region with a steep dip (see the horizontal slice in Figure 
8). In Figure 9, we present the maximum curvature 
computed by the traditional algorithm; no curvature event 
appears to correspond to the fault. In Figure 10, however, 
we show the maximum curvature computed by our 
algorithm; observe the presence of an event of high 
curvature aligned with the fault. 

 

Figure 7: Two vertical sections showing a fault (denoted 
by the circle and the arrow). 

 

Figure 8: Time slice of the classes of the dips (same 
colors as in Figure 4). 
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Figure 9: Time slice of the maximum curvature computed 
by the traditional algorithm. 

 

 

Figure 10: Time slice of the maximum curvature 
computed by the proposed algorithm. Note the curvature 
event aligned with the fault. 

 

Conclusions 

We tested the quality of curvature algorithms with a 
synthetic spherical shell. We verified that the traditional 
algorithm based on quadratic approximation produces 
poor performance for areas with steep dips. Next, we 
proposed an adaptive rotation of the axes to improve the 
performance. Using the new algorithm with real data, we 
showed that the obtained curvature is more compatible 
with the seismic data.  

The proposed modification is quite simple to implement 
but treats only the situations of dips greater than 45°. 
Variations of our scheme can be developed to improve 
the curvature computation for structures with dip angles 
near 45°. 

In general, the conditions necessary to apply the 
proposed rotations are not common in real data; normally, 
the reflectors are horizontal or show small dips. However, 

the 45° limit dip value refers to the dimensionless set of 
voxels, and therefore, this limit may correspond to a real 
angle value less than 45°. 
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